Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts

Publication Type:Journal Article
Year of Publication:2005
Authors:A. Pape Møller, Rózsa L.
Pagination:169 - 176
Date Published:2005

Antagonistic host-parasite interactions lead to coevolution of host defenses and parasite virulence. Such adaptation by parasites to host defenses may occur to the detriment of the ability of parasites to exploit alternative hosts, causing parasite specialization and speciation. We investigated the relationship between level of anti-parasite defense in hosts and taxonomic richness of two chewing louse suborders (Phthiraptera: Amblycera, Ischnocera) on birds. While Amblyceran lice tend to occur in contact with host skin, feed on host skin and chew emerging tips of developing feathers to obtain blood, Ischnoceran lice live on feathers and feed on the non-living keratin of feather barbules. We hypothesized that Amblyceran abundance and richness would have evolved in response to interaction with the immune system of the host, while Ischnoceran taxonomic richness would have evolved independently of immunological constraints. In an interspecific comparison, the abundance of Ischnocerans was positively related to host body size, while host body mass and Ischnoceran taxonomic richness accounted for the abundance of Amblycerans. Amblyceran taxonomic richness was predicted by the intensity of T-cell mediated immune response of nestling hosts, while the T-cell response of adults had no significant effect. In contrast, Ischnoceran taxonomic richness was not predicted by host T-cell responses. These results suggest that the taxonomic richness of different parasite taxa is influenced by different host defenses, and they are consistent with the hypothesis that increasing host allocation to immune defense increases Amblyceran biodiversity.

Taxonomic name: 
File attachments: 
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith