Sucking lice (Phthiraptera) from Mongolian mammals

Ján KRISTOFÍK

Institute of Zoology, Slovak Academy Sciences, Dúbravská cesta 9, SK-84206 Bratislava, Slovakia; e-mail: uzakris@savba.sk

During the joint zoological expeditions of the Comenius University Bratislava and the State University Ulan Bator and the Mongolian–German expeditions extensive collections of sucking lice were obtained from different mammal species in Mongolia. In total, 21 species of the genera *Enderleinellus* (3 species), *Hoplopleura* (5 species), *Linognathus* (1 species), *Eulignathus* (4 species), *Linognathoides* (2 species), *Neohaematopterus* (1 species) and *Polyplax* (5 species) were found. 14 species were recorded in Mongolia for the first time. Within the lice species collected in Mongolia, four species are distributed in the Holarctic region, 15 in the Palearctic region, four among them penetrate also the Oriental region and two are cosmopolitan. A synthesis of data concerning hosts (mammals) of the lice species was also carried out.

Key words: Phthiraptera, fauna, mammals, distribution, Mongolia.

Introduction

The knowledge of the Mongolian sucking lice fauna has been based only on sporadic individual collections. Previous findings have been included in papers by Dubinin (1948), Blagoveschenskii (1965) and Bezukladnikova (1969). Kéler (1967) identified eight lice species belonging to four genera in the material collected during the Mongolian–German expeditions in 1962–1964. In 1974–1982, the investigation of mammalian ectoparasites was one of the main tasks of a research program directed to the exploration of natural conditions and resources of Mongolia. The research was carried out in collaboration between the Comenius University in Bratislava and the Mongolian State University in Ulan Bator (Jedlička et al., 1985). The expeditions in summer months were part of the investigation program. The aim of this paper is to evaluate the sucking lice collections gained from mammals in Mongolia.

Material and methods

Sucking lice were collected during the Slovak–Mongolian expeditions in 1974–1978 and Mongolian–German expeditions in 1977–1978 in Mongolia. Small mammals were collected into snap traps, bigger species were shot. Altogether 836 mammals of 39 species were examined. Sucking lice were only found on 20 mammal species. In total, 1,199 sucking lice belonging to 21 species were examined. Lice collected from mammals were conserved in alcohol and mounted in permanent slides in Líquido de Swain. The material is deposited in the author’s collection at the Institute of Zoology SAS, Bratislava, Slovakia.

For identification of some sucking lice species the following literature was used: Beaucournu & Arzamanov (1967), Chin (1996), Ferris (1919, 1922, 1923, 1932), Kim & Emerson (1971).
Systematic overview and notes on geographical distribution of the species

Family Enderleinellidae

Enderleinellus disparilis Blagoveschensky, 1965
Material examined: 1 ♀, 29 July, 1978, Khankh (51°18' N, 106°24' E), Khövsgöl Aymak from Spermophilus undulatus (Pallas, 1778).

Geographical distribution of E. disparilis is unknown up to present, the only known finding from the Amur territory in Russia from S. undulatus was published by Blagoveschenskii (1965). First record of this species from Mongolia.

Enderleinellus nitschi Fahrenholz, 1916
Material examined: 3 ♂♂, 1 ♀, 1 nymph, 4 Aug., 1975, Egyn gol (49°36' N, 103°24' E), Bulgan Aymak from Scirius vulgaris Linnaeus, 1758.

A loose species frequently occurring on its typical host S. vulgaris, distributed in Eurasia (Durden & Musser, 1994). First record from Mongolia.

Enderleinellus tamiasi Fahrenholz, 1916
Material examined: 1 ♀, 23 July, 1978, Tsagaan nuur (49°33' N, 93°51' E), Bayan Olgiy Aymak from Tamias sibiricus (Laxmann, 1769).

The species was described based on a material obtained from the ZOO in Berlin, where the host was misidentified as Tamias striatus (Linnaeus, 1758), a North American species similar to the Siberian T. sibiricus. Up to present this loose species has been known only from T. sibiricus from Korea (Scanlon, 1955). First record of the species from Mongolia.

Family Hoplopleuridae

Hoplopleura acanthopus (Burmeister, 1839)

The species is known as an ectoparasite of small mammals and is spread mainly in the Holartic region (Durden & Musser, 1994), but it was also found in India (Mishra, 1981). Representatives of the genera Arvicola, Blanfordius, Chionomys, Clethriomys, Dicrostonyx, Lasiopodomys, Lemniscus, Lemmus, Microtus, Palomys and Synaptomys (Durden & Musser, 1994) are among its typical hosts, occasionally it was also found on representatives of other small mammals genera – Sorex, Crocidura, Apodemus, Micromys (Kristofik & Lysy, 1992). In Mongolia, the species was found on representatives of the genera Lasiopodomys and Microtus (Keiler, 1987).

Hoplopleura affinis (Burmeister, 1839)
Material examined: 22 ♂♂, 61 ♀♀, 8 nymphs, 30 July, 1978, Zuun Gov'sum (49°54' N, 93°51' E), Uvs Aymak from Cricetulus sp.

Apodemus agrarius (Pallas, 1771) is the typical host of this louse, however, it occurs also on A. chevrieri (Milne-Edwards, 1868). A. flavicollis (Melchior, 1834), A. speciosus (Temminck, 1844), A. sylvaticus (Linnaeus, 1758). H. affinis is distributed in Eurasia (Durden & Musser, 1994). Also other small mammal species can be occasional hosts of this louse species, similarly as in our case. First record from Mongolia.

Hoplopleura edentula Fahrenholz, 1916
Material examined: 5 ♂♂, 12 ♀♀, 15 July, 1978, Khankh from Clethriomys sp.

A loose species spread in Eurasia, found on Clethriomys glareolus (Schreber, 1780), C. rufocanus (Sundevall, 1846), C. rutulus (Pallas, 1779), Eothenomys melanogaster (Milne-Edwards, 1871) (Durden & Musser, 1994). The species is morphologically very similar to H. acanthopus, distributed at middle and higher altitudes in European mountains (Beaucournu, 1968). First record from Mongolia.

Hoplopleura meridianis Ferris, 1921
Material examined: 1 nymph, 27 June, 1974 and 1 ♀, 16 July, 1975, Ulan Bator, from Meriones unguiculatus (Milne-Edwards, 1876); 5 ♂♂, 3 ♀♀, 4 Sept., 1977, Mongol Els (47°30' N, 96°30' E), Zavkhan Aymak from Meriones meridianus (Pallas, 1773).

The known hosts of the species are: Meriones unguiculatus, M. tamariscinus (Pallas, 1773), M. ibycus Lichtenstein, 1823, M. crassus Sundevall, 1842. It is distributed in Iran, Pakistan, The People’s Republic of China, Russia, Tajikistan (Durden & Musser, 1994), Kazakhstan (Bezkladnikova, 1962) and Mongolia (Dubinin, 1948).
Hoplopleura ochotonae Ferris, 1922
Material examined: 6 dd, 6 99, 1 nymph, 18 July, 1974, Ulaan-Khad (50°00' N, 102° 15' E), Bulgan Aymak from Ochotona dauurica (Pallas, 1776).

According to DURDEN & MUSser (1994), Ochotona celsius Lyon, 1907, O. hyperborea (Pallas, 1811), O. roylei (Ogilby, 1839), O. dauurica, O. alpina (Pallas, 1773), O. thibetana (Milne-Edwards, 1871) belong to the hosts of this louse; it is distributed in Afghanistan, Kyrgyzstan, Mongolia, Nepal, The People’s Republic of China, Russia – Chita Oblast, Priyolar Ural, Urguskot Oblast and Tajikistan.

Family Linognathidae

Linognathus vituli (Linnaeus, 1758)
Material examined: 3 dd, 3 99, 21 Aug., 1978, Bayan Tsogt sum (47°54' N, 106°12' E), Tov (Central) Aymak from Bos taurus Linnaeus, 1758.

A cosmopolitan species, Bos taurus is its typical host (DURDEN & MUSser, 1994). First record from Mongolia.

Family Polyplacidae

Eulinognathus allactaga Johnson, 1957

A. sibirica is the typical host of this louse. It occasionally occurs on other Allactaga species (CHIROV & OZERova, 1990). The species was found in Kyrgyzstan (OZERova, 1988), Mongolia (KELen, 1967), The People’s Republic of China (JOHNSON, 1957, CHIN, 1984) and Ukraine (SERGIEenko, 1974).

Eulinognathus biuncatus Ferris, 1932

A species found in The People’s Republic of China (FERRIS, 1932; CHIN, 1984) on Dipus sagitta and in Uzbekistan (CAI5, 1977) on Paradipus stenodactylus (Vinogradov, 1929). First record of this species from Mongolia.

Eulinognathus cruciformis Chin, Bai et Qui, 1995

This species was described based on specimens collected from Allactaga sp. in People’s Republic of China: Zhong Ning County, Ningxia and Hai Yuan County, Alashan (CHIN et al., 1995). First record from Mongolia.

Eulinognathus euchoreutes Cais, 1977

This species was previously found in People’s Republic of China (CAI5, 1977; CHIN, 1984). E. naso is its host. First record from Mongolia.

Linognathoides laevisculus (Grube, 1851)

145
Kvövsögöl Aymak; 1 δ, 10 ♀♀, 3 nymphs, 22 July, 1978 and 5 δ, 10 ♀♀, 5 nymphs, 2 Aug., 1978, Tiaralan sum (Kharkhira uul) (49°48' N, 91°54' E), Uvs Aymak from Spermiophilus undulatus. 2 δ, 3 ♀♀, 6 nymphs, 23 Aug., 1977, Bayan-Bulag (Shine Zhinst sum), Bayan khongor Aymak from S. alasplanicus Büchner, 1888.

A species distributed in the Holarctic region, its hosts are: Ammospermophilus leucurus (Merriam, 1889), Spermophilus beecheyi (Richardson, 1829), S. beldingi Merriam, 1888, S. citellus (Linnaeus, 1766), S. columbianus (Ord, 1815), S. dauricus Brandt, 1843, S. eraythrogenys Brandt, 1841, S. franklinii (Sabine, 1822), S. fulvus Lichtenstein, 1823, S. lateralis (Say, 1823), S. major (Pallas, 1778), S. parryii (Richardson, 1825), S. pygmaeus (Pallas, 1778), S. richardsonii (Sabine, 1822), S. sibiricus (Güldenstaedt, 1770), S. townsendii Bachman, 1839, S. tridecemlineatus (Mitchill, 1821) S. undulatus, S. variegatus (Erxleben, 1777), S. washingtoni (A. H. Howell, 1838) (DURDEN & MUSSER, 1994). In Mongolia it was previously found on S. major by KÉLER (1967).

Hosts of this host species are: Marmota baibacina Kastschenko, 1899, M. bobak (Müller, 1776), M. caudata (Geoffroy, 1844), M. himalayana (Hogson, 1841). M. sibirica. L. palaearticus is distributed in Afghanistan, India and Kashmir State, Kyrgyzstan, Pakistan, People’s Republic of China, Russia: Altay, Transbaikalia, Turkmenistan (DURDEN & MUSSER, 1994). First record from Mongolia.

Host of this host species are: Sciurus carolinensis Gmelin, 1788 and S. vulgaris. Originally distributed in the Holarctic region. Due to the introduction of S. carolinensis to Australia and South Africa it penetrated also to these two continents (DURDEN & MUSSER, 1994). First record from Mongolia.

This species is distributed mainly in the northern part of the Holarctic region (DURDEN & MUSSER, 1994), but it was also found in Afghanistan (SMETANA & DITEL, 1970) and Russia - Altay (BEZUKLADNIKOVA, 1962, SOSNINA & DUBININA, 1982). Its hosts are: Arvicola terrestris (Linnaeus, 1758), Alticola argens, C. glareolus, C. rutilus, C. rufocanus, Phocoemyos intermedius Merriam, 1889 (DURDEN & MUSSER, 1994). First record from Mongolia.

A species distributed in Mongolia, Pakistan, People’s Republic of China, Tajikistan and Turkmenistan. It was found on Meriones crassus, M. meridianus (DURDEN & MUSSER, 1994).

A species found in Kazakhstan, Mongolia, Tajikistan on E. tancrei (DURDEN & MUSSER, 1994).

A species described based on specimens collected in People’s Republic of China on Phodopus roborovskii (Satunin, 1903) and P. sungorus (Pallas, 1773) (CHIN, 1993). First record from Mongolia.

A cosmopolitan species occurring on Bandicota bengalensis (Gray et HARDWICKE, 1833), Rattus argentiventer (Robinson et Kloss, 1916), R. exulans (Peale, 1848), R. nitidus (Hodgson, 1845), R. norvegicus (Berkenhout, 1769), R. rattus (Linnaeus, 1758), R. tanezumi Temminck,

Discussion

Among 21 sucking lice species found in the examined material, 14 species are first findings from Mongolia. This relatively high number of first records is due to insufficient knowledge of the lice fauna of Mongolia. Except the data of Kéler (1967), who recorded only 6 most frequent sucking lice species in Mongolia (two species were identified only up to the generic level), only sporadic data have been available from that territory.

Among the three *Euderleinellus* species found in Mongolia, *E. disparilis* seems to be relatively rare. This species is morphologically very similar to *E. propinquus* Blagoveschenskij, 1965 which was found on *Spermophilus fulvus*, *S. suslicus* and *S. citellus*. The situation is also similar with *E. tamiiasi*, an ectoparasite of *Tamias sibiricus*. *E. nitizchi* probably frequently occurs on *Sciurus vulgaris*.

Hoplopleura acanthopus was the most abundant representative of the *Hoplopleura* genus in the investigated territory. An occasional host (*Cricetulus* sp.) was found for *H. affinis*. *H. edentula*, *H. meridionalis* and *H. ochotae* occurred in relatively low numbers. *H. meridionalis* is bound to the Asiatic representatives of the *Mertiones* genus, though in Africa it has not been found on the species of this genus. Six *Hoplopleura* species were collected on the species of the genera *Tatera*, *Latastea*, 1882 and *Gerbillissus Desmarest*, 1894, however, they are not morphologically similar to *H. meridionalis* (Johnson, 1960). *H. uralensis* living on *Ochotona hyperborea* on the western slopes of the Polar Urals and in the Bolshaya Synya river basin (Russia) and *H. biloba* living on *O. macrotis* (Günther, 1875) in Kyrgyzstan and Tajikistan (Dubina & Sosnova, 1997) are morphologically similar to *H. ochotae*.

Among the *Eulogonathus* species parasitizing on jerboas, the finding of *E. cruciformis* (described from *Allactaga* sp.) is of special interest as it was found on *A. bulatta* and *A. sibirica*. This shows that *A. sibirica* is the host of more *Eulogonathus* species than it has been known so far (Chirov & Ozerova, 1990). Except *E. biuncatus*, *E. dipoides* also was described from *Dipus sagitta* (Blagoveschenskii, 1965). The description of *E. dipoides* was found to be insufficient because of the lacking differential diagnosis of *E. biuncatus* and *E. dipoides*. Chirov & Ozerova (1990) published a review of the distribution of 15 sucking lice species of the genus *Eulogonathus*, with descriptions of new species. The authors characterised the differences between *E. biuncatus* and *E. dipoides* based on an examination of the lice collection in the Zoological Institute of the Russian Academy of Sciences (St. Petersburg). However, I consider the redescriptions of the two species given by the above authors to be insufficient, too. A depiction of morphological differences between *E. biuncatus* and *E. dipoides* would be more useful, because the differences in characteristics (head description, form of sternal plate, size of sadeagus parameres) presented by Chirov & Ozerova (1990) are hard to be expressed verbally. For example, Chirov & Ozerova (1990) stated that the sternal plate of *E. biuncatus* has an irregularly hexagonal form, although this characterisation corresponds more with the description of the sternal plate of *E. dipoides* given by Blagoveschenskii (1965). That is why a reconstruction of the two species would be advisable.

Among the representatives of the *Linognathoides* genus, *L. laeviusculus* relatively frequently occurred on *Spermophilus undulatus* in Mongolia, but the species was also found on a new host, *S. alaspanicus*.

Among the *Polyplax* genus, the finding of *P. qiwa*, originally described from representatives of the *Phodopus* genus, is of special interest as there is another morphologically similar congener, *P. cricetulus* (Chin, 1995), which was found on *Cricetulus longicaudatus* (Milne-Edwards, 1867). Ewig (1933) described *P. dentaticornis* from *C. longicaudatus*. Johnson (1958) concluded that the holotype (male) of *P. dentaticornis* was very similar to *P. serrata* and that this holotype could only be an aberrant individual of *P. serrata*. In my opinion *C. longicaudatus* cannot be the main host of the two above listed congenic lice species. In future, new findings of the representatives of the *Polyplax* genus also will show, whether of *C. barabensis*, which our specimens of *P. qiwa* were found on, was only an occasional host of this lice or whether *P. qiwa* has more hosts. *P. chinensis* parasitising on *Mertiones* species has not been found in North African gerbils. According to the present knowledge *P. ellobi* is a specific parasite of *Ellobius tancroi*. Kéler (1967) listed a *Polyplax* species from *E. talpinaus* from Mongolia and considered it to be a new species. However, according to Wilson & Reeder (1993) only *E. tancroi* has been found to occur in Mongolia. Just for this reason I suppose Kéler's specimens to belong to *P. ellobi*.

The species *Linognathoides vituli* and *Poly-
plax spinulosa are cosmopolitan. The species L. laeviusculus, P. borealis, Neobaematopinus sciuri, and Hoplopleura acanthopus are distributed in the Holarctic region. H. acanthopus also occurs in the Oriental region (India). Enderleinellus nitschi is spread in the Palearctic region (except N Africa), while the species E. disparilis, E. tamiaisis, Hoplopleura ochotonae, H. meridionidis, Euligin Nathusia allactagae, E. biuncatus, E. euchoreutae, E. cruciformis, Linognathoides palaeartcus (also distributed on the Oriental region – N India), Polyplax ellbii, P. chinesis and P. qiue occur in the Asiatic part of Palearctic region. The species Hoplopleura affinis and H. edentula are distributed in both the Palearctic and in the Oriental regions.

Acknowledgements

The author is deeply obliged to the co-workers of the Comenius University in Bratislava, namely Dr. D. Cyprih, Dr. J. Dura, Dr. J. Halgos, Dr. L. Jedlicka, Dr. M. Kiefer, Dr. M. Krumpal and Dr. I. Orzagh, who participated in the expeditions to Mongolia and took part in lice collecting. Special thanks to Prof. M. Stubb from the Zoological Institute of the Martin-Luther-University in Halle/Saale for the kind submitting of the study material.

References

Received 2 November, 1998
Accepted 21 January, 1999